Kinetic Study of Thermal Degradation of a Lignin Nanoparticle-Reinforced Phenolic Foam

نویسندگان

  • J. C. Domínguez
  • M. V. Alonso
چکیده

In the present study, the kinetics of thermal degradation of a phenolic and lignin reinforced phenolic foams, and the lignin used as reinforcement were studied and the activation energies of their degradation processes were obtained by a DAEM model. The average values for five heating rates of the mean activation energies obtained were: 99.1, 128.2, and 144.0 kJ.mol for the phenolic foam; 109.5, 113.3, and 153.0 kJ.mol for the lignin reinforcement; and 82.1, 106.9, and 124.4 kJ.mol for the lignin reinforced phenolic foam. The standard deviation ranges calculated for each sample were 1.27-8.85, 2.22-12.82, and 3.17-8.11 kJ.mol for the phenolic foam, lignin and the reinforced foam, respectively. The DAEM model showed low mean square errors (<1x10), proving that is a suitable model to study the kinetics of thermal degradation of the foams and the reinforcement. Keywords—Kinetics, lignin, phenolic foam, thermal degradation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Materials Produced from Plant Biomass. Part III: Degradation Kinetics and Hydrogen Bonding in Lignin

In this study Klason lignins from Eucalyptus grandis (LEUG) and Pinus taeda (LPIT) were characterized using Fourier transform infrared (FTIR) spectroscopy and thermogravimetry (TGA). The degradation kinetic parameters were determined by TGA using the Kissinger method. Thermogravimetric results showed that LPIT had higher thermal stability and also higher activation energy than LEUG. FTIR result...

متن کامل

Thermal Degradation Kinetic Study of a Fuel-rich Energetic Mixture Containing Epoxy Binder

      In this work, thermal degradation behavior of a fuel-rich energetic mixture containing epoxy binder was studied by thrmogravimetric analysis and differential scanning calorimetry under dynamic nitrogen atmosphere at different heating rates. Variation of the thermal degradation activation energy of the mixture was evaluated by differential and integral isoconversional methods via ...

متن کامل

Accelerated Heat Aging Study of Phenolic/Basalt Fiber Reinforced Composites

One of the greatest impediments to use polymer-matrix composites is their susceptibility to degradation when exposed to the elevated temperatures and the limited knowledge on the thermal and mechanical properties of these composites at such temperatures. The objective of this study is to evaluate the effects of accelerated heat aging on the tensile properties of the Woven Basalt/Phenolic (WBP) ...

متن کامل

Modeling of Fiber-reinforced Phenolic Foam

A statistical predictive model is developed that describes the compression properties of phenolic foam reinforced with glass fibers. An analysis of variance is applied to determine the behavior of composite phenolic foam. The material variables used in the study are fiber length, fiber weight fraction and weight percentage of blowing agent. The responses analyzed are density, compressive modulu...

متن کامل

Studying the Mechanical and Thermal Properties of Polymer Nanocomposites Reinforced with Montmorillonite Nanoparticles Using Micromechanics Method

In this study, the mechanical and thermal behavior of the nano-reinforced polymer composite reinforced by Montmorillonite (MMT) nanoparticles is investigated. Due to low cost of computations, the 3D representative volume elements (RVE) method is utilized using ABAQUS finite element commercial software. Low density poly ethylene (LDPE) and MMT are used as matrix and nanoparticle material, respec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015